
New Ideas in Psychology 61 (2021) 100838

Available online 16 December 2020
0732-118X/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Using logic programming for theory representation and
scientific inference☆

Jean-Christophe Rohner a,*, Håkan Kjellerstrand b

a Department of Psychology, Lund University, Sweden
b Independent Researcher, Malmö, Sweden

A R T I C L E I N F O

Keywords:
Logic programming
Prolog
Scientific inference
Scientific rigor

A B S T R A C T

The aim of this paper is to show that logic programming is a powerful tool for representing scientific theories and
for scientific inference. In a logic program it is possible to encode the qualitative and quantitative components of
a theory in first order predicate logic, which is a highly expressive formal language. A theory program can then
be handed to an algorithm that reasons about the theory. We discuss the advantages of logic programming with
regard to building formal theories and present a novel software package for scientific inference: Theory Toolbox.
Theory Toolbox can derive any conclusions that are entailed by a theory, explain why a certain conclusion
follows from a theory, and evaluate a theory with regard to its internal coherence and generalizability. Because
logic is, or should be, a cornerstone of scientific practice, we believe that our paper can make an important
contribution to scientific psychology.

The aim of this paper is to show that logic programming (LP) is a
powerful tool for representing scientific theories and for scientific
inference.1 By “theory” we mean a systematic qualitative and quanti-
tative description of events, their relations and all background as-
sumptions on which these relations depend. Theories describe, predict
and explain relevant psychological phenomena, and they make definite
(falsifiable) statements about the world. With LP it is possible to encode
a theory in first order predicate logic. We intend to show that doing so
has two important consequences. First, such a representation is highly
expressive, meaning that it has the capacity to capture even intricate
nuances of human thought, feeling and behavior. Secondly, such a
representation can be handed to an inference algorithm that generates
valid conclusions. A valid conclusion is a conclusion that is bound to be
true if a theory and its background assumptions are true. So if a theory is
a corroborated2 one, LP can be used to make accurate predictions and
deduce accurate explanations. If a theory is a provisional one, LP can be
used to derive predictions for empirical testing, check whether the

theory is internally coherent, and examine how falsifiable it is, among
other things.

Logic has a long and revered history in philosophy but is also,
sometimes colloquially, referred to as the ideal way of reasoning in other
scientific disciplines (e.g. Shapiro & Kouri Kissel, 2018). To quote an
introductory textbook on scientific methods in psychology “A scientific
theory is a logically organized set of propositions that defines events,
describes relationships among events, and explains the occurrence of
events” (Shaughnessy et al., 2000, p. 49). With the advent of AI, logic
also started to play an important role as a knowledge representation
scheme: Standard textbooks in AI present first order logic as one of the
most powerful formalisms for constructing intelligent agents that
represent and reason about complex knowledge domains. Other
knowledge representation languages, like the Web Ontology Language
(OWL), are considered subsets of first order logic (Russell et al., 2010).
In first order logic it is possible to describe qualitative and quantitative
relations between singular objects and sets of objects; such relations can

☆ We want to thank the following people for their kind help during this project: Alan Baljeu, Anne Ogborn, Carlo Capelli, Daniel Lyons, David Tonhofer, Eric
Taucher, Erik J Olsson, Fabrizio Riguzzi, @false, @Guy Coder, Jan Wielemaker, @lurker, Markus Triska, Martin Bäckström, @Mostowski Collapse, Paul Brown,
Paulo Moura, Peter Ludemann, and @repeat.

* Corresponding author. BOX213, 221 00, Lund, Sweden.
E-mail address: jean-christophe.rohner@psy.lu.se (J.-C. Rohner).
URL: http://www.hakank.org (H. Kjellerstrand).

1 We use the term “theory representation” instead of “knowledge representation”, because the work in this paper applies to established theories as well as pre-
liminary theories (which do not constitute knowledge in the sense of being justified true beliefs).

2 In the sense of having survived multiple tests (Popper, 1972).

Contents lists available at ScienceDirect

New Ideas in Psychology

journal homepage: http://www.elsevier.com/locate/newideapsych

https://doi.org/10.1016/j.newideapsych.2020.100838
Received 4 June 2020; Received in revised form 21 September 2020; Accepted 17 November 2020

mailto:jean-christophe.rohner@psy.lu.se
http://www.hakank.org
www.sciencedirect.com/science/journal/0732118X
https://http://www.elsevier.com/locate/newideapsych
https://doi.org/10.1016/j.newideapsych.2020.100838
https://doi.org/10.1016/j.newideapsych.2020.100838
https://doi.org/10.1016/j.newideapsych.2020.100838
http://crossmark.crossref.org/dialog/?doi=10.1016/j.newideapsych.2020.100838&domain=pdf
http://creativecommons.org/licenses/by/4.0/

New Ideas in Psychology 61 (2021) 100838

2

have any degree of complexity (within reasonable limits). This means
that it is possible to combine a representation of the abstract semantic
content of a theory (traditionally stated in natural language) with a
representation of the (abstract) mathematical content of the theory into
a single formal system. This system can then be used as a basis for sci-
entific inference.

Prolog is one of the most widely used first order LP languages
(Russell et al., 2010). It was developed by Alain Colmerauer and Phil-
ippe Roussel in the 1970’s (Colmerauer & Roussel, 1996). Some exam-
ples of real world settings where Prolog has been used are the
International Space Station project (Rayner et al., 2005), the IBM Wat-
son project (Lally & Fodor, 2011) and a widely used airline ticket
booking system (Wilson, 2005). In Prolog it is possible to formalize a
theory by writing down a set of definite clauses (we will return to what
this means later). This clausal form logic is not full first order logic but a
syntactic subset thereof. However, almost any formula in full first order
logic can be rewritten in this clausal form (Russell et al., 2010).
Semantically, Prolog thus retains much of the expressive power of full
first order logic. In addition, Prolog is Turing complete; this means that
it is possible to write logic programs that can perform any currently
known computation (Crookes, 1988; Triska, 2020). A good introductory
text to Prolog is Programming in Prolog: Using the ISO Standard (Clocksin
& Mellish, 2012). More advanced texts have been written by Bratko
(2001), Sterling and Shapiro (1994), and Triska (2020). In the current
project we use Prolog to implement all logic programs.

Despite these apparent advantages, it seems that papers that describe
LP, or first order logic, as theory representation tools in psychology are
surprisingly rare. Our searches of Scopus for “first order logic”, “predi-
cate logic”, “logic programming” and “Prolog” revealed 27, 17, 72 and
58 matches, respectively (restricted to the subject psychology, title,
abstract and keywords, November 2020). As far as we could tell, none of
these works contain a general and systematic discussion of the advan-
tages of LP for representing scientific theories and for scientific inference
in psychology. The papers that, relatively speaking, come closest to our
aims, either use first order logic to model other things than scientific
theories, e.g. common sense psychology (Gordon & Hobbs, 2017) and
how subjects learn and think about causal relations (Griffiths & Ten-
enbaum, 2007); or use first order logic to model very specific phenom-
ena, e.g. neural processes in schizophrenia (Flax, 2007), social
interaction between primates (Bond, 1999), and a specific emotion
theory (Adam et al., 2009). Given this apparent gap in the literature, and
the scientific significance of logic, we believe that our paper can make a
novel and important contribution to psychology.

Being able to encode theories into accurate representations, and
being able to make correct inferences based on these representations,
are essential components in any scientific project. Achieving these goals
critically depends on having a good theory representation language at
hand. We are not convinced that natural languages, such as English, are
ideal for these purposes, however. In contrast to logic, natural languages
are not well defined symbolic representations that are suitable for
logical inference.3 For example, it is very hard to design algorithms that
reason deductively from typical English sentences (one and the same
concept or relation can be described in very many ways). Also, natural
language expressions tend to be ambiguous which can lead to erroneous

conclusions. Mathematics, on the other hand, has important strengths
when it comes to precision and validity, and such formalizations are
indeed common in psychology. Well known examples, besides basic
bivariate statistical models, include general linear models (e.g. Cohen
et al., 2014), structural equation models (e.g. McArdle & Kadlec, 2013),
multinomial processing tree models (Batchelder & Riefer, 1999) and
Bayesian models (e.g. Bielza & Larrañaga, 2014). Nonetheless, we
believe that LP can complement these schemes in an important way: By
adding semantic content to formal representations of psychological
theories. We will explain what this means more precisely in the
remainder of this paper.

There is also a fundamental difference between LP, which is a type of
symbolic AI, and what can be called “statistical AI”, in terms of how
objects, properties and relations are represented and inferred. Statistical
AI consist of supervised and unsupervised machine learning algorithms
that operate on large vector representations; some well-known examples
are classical neural networks, deep neural networks and support vector
machines. These are highly expressive formalisms that achieve good
performance levels when it comes to applied prediction (e.g. Marwala,
2019). But even if some progress has been made recently (e.g. Murdoch
et al., 2019), they are still inherently hard to understand by humans.
Logic programs, in contrast, use words to represent objects, properties
and relations; this makes them more similar to natural language, and
therefore more transparent. As we will show later, it is also possible to
follow all the steps that lead up to a conclusion from a logic program.
Considering the importance of accountability in AI, these features of LP
seem attractive (e.g. Jobin et al., 2019).

Logic programming can also be contrasted with a symbolic cognitive
modeling approach (see Kriegeskorte & Douglas, 2018 for an overview).
ACT-R is perhaps the most well-known example (Anderson et al., 2004).
Even if a detailed comparison is beyond the present scope, there is an
important difference that deserves some attention. Typically, cognitive
models are special purpose models that are intended to be structurally
and computationally similar to the mind (or brain). ACT-R, for example,
has modules for perceptual and motor processes, procedural memory
and declarative memory. In contrast, LP can be used to describe any kind
of theory, as long as it can be written down in clausal form; it is up to the
user to decide what concepts and relations it covers. Since Prolog is a
Turing complete general purpose language, it can be used to represent
such divergent things as, say, the mutagenicity of chemical molecules
(Srinivasan et al., 1996), the rules of chess (Bratko, 2001), and a sym-
bolic equation solver (Sterling et al., 1989).

This paper is structured around three major sections: 1. Logic Pro-
gramming, in which we give a basic introduction to the syntax and se-
mantics of logic programs and explain proof search; 2. Representation,
in which we show how LP can be used to build expressive theory rep-
resentations; and 3. Inference, in which we show how LP can be used for
scientific inference.

1. Logic programming

A logic program can be written and run in a Prolog environment. In
the current project we use SWI Prolog (Wielemaker et al., 2012), which
we complement with the software package Theory Toolbox (Rohner,
2020). Theory Toolbox provides mechanisms for writing classical logic
syntax4 and a set of tools for scientific inference (which we present in
section 3. Inference). SWI Prolog is available in this link5 under the
conditions of a BSD license. Theory Toolbox is available as a GitHub
repository, in this link,6 under the conditions of a GPL3 license

3 Interestingly, though, there is a formal language that reads as natural lan-
guage: Attempto Controlled English (ACE; Fuchs et al., 2008). The advantage of
ACE is that it is easy to comprehend while still being computable (for logical
inference). As far as we understand, however, the combination of Prolog and
CLPR (which we use in this project) is more powerful than ACE when it comes
to representing and reasoning about mathematical equations and relations that
involve complex nesting patterns (both of which are important in psychology,
as we explain in the paper). Still, ACE is an attractive option if having a formal
representation that reads as natural language is imperative. More information
about ACE can be found in this link: http://attempto.ifi.uzh.ch/site/resources/.

4 For readers that are familiar with Prolog, term_expansion/2 and goal_
expansion/2 are used to replace :- with ⇐, comma with ∧, semicolon with ∨,
and \+ with ¬.

5 https://www.swi-prolog.org/.
6 https://github.com/JeanChristopheRohner/theory-toolbox.

J.-C. Rohner and H. Kjellerstrand

http://attempto.ifi.uzh.ch/site/resources/
https://www.swi-prolog.org/
https://github.com/JeanChristopheRohner/theory-toolbox

New Ideas in Psychology 61 (2021) 100838

3

(installation and operation instructions can be found in the repository).

1.1. Syntax and semantics

Fig. 1 shows a simple logic program about positive reinforcement
and drug abuse (the example is fictional). Before going into details we
will try to give a bird’s eye view of the program. Line 1 includes7 the
code in Theory Toolbox so that symbols from classical logic can be used
in the theory program. Lines 3–9 name a set of objects and describe their
properties, e.g. that h1 is a human, that heroin is an opiate and that LSD
is a hallucinogen. Lines 11 and 12 state two relations between objects:
that h1 used heroin with a probability of 0.90 and that h2 used LSD with
a probability of 0.90. Lines 14 and 15 are conditional statements;
respectively, they mean that if a substance is an opiate then it causes
pleasure with a probability of 0.90, and if a substance is a hallucinogen
then it causes pleasure with a probability of 0.50. Lines 17–21 mean that
if somebody used a substance with probability X1, and if that substance
causes pleasure with probability X2, then he or she uses that substance
with probability X3 = X1*X2 (the product means conjunction).

The basic components of a logic program, like the one in Fig. 1, are
atomic formulas (or “atoms” for short).8 An atomic formula represents a
property or a relation that involves singular objects or sets of objects. It
consists of a predicate name written with an initial lower case letter
directly followed by a comma delimited list of arguments in parentheses;
e.g. opiate(heroin) or event(H, uses, S, X3). Each argument in
an atomic formula is a term. A term is either a constant, a variable or a
function. A constant denotes a singular object, and it is written as a
string that starts with an initial lower case letter or as a number (e.g. h1,
heroin, 0.90). A variable is a placeholder that can be instantiated
with, i.e. bound to, any kind of term; it is written as a string that starts
with an uppercase letter (e.g. X, H, Behavior). A function denotes a
relation and it consists of a function name directly followed by any
number of terms in parentheses; in the atom event(H, represent,
event(H, like, S)), the part event(H, like, S) is a function for
example. Note that the names we used to denote objects, variables and
relations in Fig. 1 are arbitrary. So instead of h1, S and event(H,
uses, S, X3), we could just as well have written, say, person1, Drug
and episode(P, uses, Drug, X3), respectively. Syntactically, the
last three elements are still a constant, a variable and an atomic formula
(in this order).

In addition to atomic formulas, a logic program can also contain
numerical constraints that represent any mathematical equations in a
theory; e.g. about how the probabilities of certain events are related.9 A
numerical constraint is written in curly braces, e.g. {X1 = 1 – X2 *X3} or
{X1 > abs(X2 – X3)}. This functionality is provided by the CLPR
module in SWI Prolog (Holzbaur, 1995), which is loaded by Theory
Toolbox. A detailed specification of legal CLPR expressions, as well as
the limitations of this module, can be found in Holzbaur (1995).

A logic program consists of a set of definite clauses, each delimited
with a period. A definite clause is an implication with a single non-
negated atomic formula in the consequent, and zero or more atomic
formulas or numerical constraints in the antecedent10. Let C denote a
non-negated atomic formula, and let A denote an atomic formula or a

numerical constraint. Then the definite clause C. means that C is un-
conditionally provable (because the antecedent is empty); the definite
clause C⇐A1 ∧ A2 ∧ … ∧ An. means that C is provable if A1 ∧ A2 ∧ … ∧

An is provable. Consider the program in Fig. 1. According to the defi-
nition, the consequents on lines 3–12 are provable without further
conditions; the consequents on lines 14–17 are provable if their ante-
cedents are provable.

In the antecedent of a clause, atoms and constraints can be combined
with conjunction (∧), disjunction (∨), equality (=), or ordinary pa-
rentheses. A conjunction A1 ∧ A2 ∧ … ∧ An means that each Ai (i = 1, 2,
…, n.) has to be provable. A disjunction A1 ∨ A2 ∨ … ∨ An means that at
least one Ai (i = 1, 2, …, n.) has to be provable. Equality can be used to
state that two constants have to be equal (equality stands for unification;
we return to what this means later). Parentheses are used to indicate
precedence, as usual. Also, any atomic formula Ai in the antecedent of a
clause can be negated by prefixing it with the symbol ¬, meaning that Ai
is not provable. Note that ¬Ai is distinct from stating that Ai is false in the
sense that Ai is not the case. That Ai is not the case has to be indicated
explicitly, e.g. in terms of a probability of 0: p(Ai, 0), meaning that it is
provable that Ai has a probability of 0.

Clauses that have a non-empty antecedent typically contain variables
that denote sets of objects. Variables play an important role for
expressing the idea that one or more relations hold for all objects of a
certain kind; i.e. to make universal statements (see lines 14–21 in Fig. 1
for example). The scope of a variable is the clause in which it appears.
This means that same-named variables that appear in the same
clause (i.e. everything up to the period) have to be instantiated with the
same term. Same-named variables that appear in different clauses can be
instantiated with different terms. So in the clause that starts on line 17 in
Fig. 1, the variable S has to be instantiated with the same constant
throughout the clause (e.g. heroin).

1.2. Proof search

Given a logic program, such as the one in Fig. 1, search for a proof
can be initiated by posing a query goal, e.g. ?-event(H, uses, S,
X3). This search finds any variable instantiations in the goal that are
provable from the program, e.g. H = h1, S = heroin, and X3 = 0.81

from the toy example. How does this process work?
One of the key ingredients is unification (indicated by =). Unifica-

tion determines if two expressions match or not according to the
following rules:

1. Two constants unify if they are the same; e.g. lsd = lsd and 1 = 1.
2. A variable unifies with any kind of term and is instantiated to that

term; e.g. S = heroin, X2 = 0.50, X = Y, and Z = event(h1,

used, heroin, 0.90).

3. Two atomic formulas, or functions, unify if all these conditions hold:
a. they have the same name
b. they have the same number of arguments
c. all of their arguments unify
d. their variables can be instantiated consistently

Accordingly, human(X) = human(somebody), because both atoms
have the same name, the same number of arguments, and because a
variable unifies with any kind of term (X unifies with somebody). Also
event(h, represents, Representation) = event(h, repre-

sents, event(H, likes, S)), because both atoms have the same
name, the same number of arguments, and because a variable (here
Representation) unifies with any kind of term, including a function
(here event(H, likes, S)). However, something(X, X) and
something(1, 2) do not unify, because the instantiations of X are
inconsistent (X can’t be instantiated to both 1 and 2 in the same clause).

7 Another way to achieve the same functionality is to use a Prolog module
(we will try to implement this in the future when we have more time).

8 Note that we adopt the terminology from classical first order logic as in
other texts about logic programming (e.g. Nilsson & Maluszynski, 1995;
Riguzzi, 2018). Some Prolog texts have a different terminology: For example, an
atomic formula is sometimes called a “compound term”, and a textual constant
an “atom”.

9 Such constraints are not limited to probability equations, though: Expres-
sions involving any real numbers are allowed.
10 In technical terms a definite clause with an empty antecedent is called a

“fact”, and a definite clause with a non-empty antecedent is called a “rule”.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

4

In the search for a proof a goal is provable in each one of these three
important cases (without going into too much technical detail):

1. The goal is true, as in {2 < 3} or {0.90 * 0.90 = 0.81}.
2. The goal unifies with the consequent of a clause that has an empty

antecedent, like event(h2, used, lsd, 0.90). on line 12 in
Fig. 1.

3. The goal unifies with the consequent of a clause that has a provable
antecedent: In C⇐A1 ∧ A2 ∧ … ∧ An the consequent C is provable if
each Ai (i = 1, 2, …, n) is provable. Proving any Ai might, in turn,
involve proving other antecedents (e.g. proving the antecedent of a
clause in which the atom A1 is the consequent, and so on).

Consider the toy example in Fig. 1 again and suppose that the query
goal is ?-event(H, uses, S, X3). What is the process that leads up to
a conclusion? This goal unifies with the consequent on line 17; so the
next steps are as follows with regard to the antecedents of this clause:

1 human(H) unifies with the consequent on line 3; H = h1

2 event(h1, used, S, X1) unifies with the consequent on line 11;
S = heroin, X1 = 0.90

3 cause(heroin, pleasure, X2) unifies with the consequent on
line 14, and opiate(heroin) unifies with the consequent on line
6; X2 = 0.90

4 {0.81 = 0.90 * 0.90} is true

So one of the results of this search is event(h1, uses, heroin,
0.81), meaning that h1 uses heroin with a probability of 0.81.

Before ending our section on LP we have to point out two important
characteristics of proof search. First, how does the conclusion that a
consequent is provable, in the sense we used above, relate to whether
the consequent is true in the sense of corresponding to states of affairs?
The answer is that it depends. Prolog uses resolution to find a proof
(Robinson, 1965; Russell et al., 2010). Resolution produces valid con-
clusions, i.e. conclusions that have to be true if the premises are true. So
if the clauses in a program are true with respect to states of affairs, then
the conclusions that follow from the program are true in the same sense.
In contrast, if the clauses in the program are false with respect to states
of affairs, then the conclusions that follow from the program are false, or
true by accident (with respect to states of affairs). The only thing that
resolution provides is an answer to what a program entails. Secondly,
what does it mean, exactly, that a consequent is not provable? This
simply means that the consequent is not entailed by the program. So a
program that misses to represent certain facts in some knowledge
domain, will fail to derive any conclusions that involve these facts (the
program in Fig. 1, for example, does not say anything about cocaine
being reinforcing). Also note that C not being provable is distinct from
deducing that C is false in the sense of not being the case (similarly to the
difference between ¬Ai and p(Ai,0) discussed previously). For example,

the clause animal(A) ⇐ breathes(A). does not entail that a rock is
not an animal. To be able to deduce this, we would instead have to write
something like p(animal(A), X1) ⇐ p(breathes(A), X2) ∧ {X1

= 1 * X2}. and p(breathes(rock), 0).
With the technical details of LP out of the way, we can move on to a

discussion of its advantages with respect to theory representation and
scientific inference. We start with representation.

2. Representation

In this section we describe how psychological theories can be rep-
resented in logic programs and discuss the advantages of such repre-
sentations. We start with a description of some general design principles,
then give 5 theory examples, and finish with a discussion of the positive
features of LP with regard to theory representation.

2.1. Design principles

A theory program is a set of definite clauses that contain a qualitative
and quantitative description of events, relations between events,
together with any background assumptions on which these relations
depend. As stated in section 1. Logic Programming a definite clause is an
implication where the consequent is provable if its antecedent is prov-
able or, alternatively, where the consequent is unconditionally provable
(if its antecedent is empty). The qualitative part of a theory consists of a
description of the semantic content of each relation and its events. The
quantitative part consists of set of equations that describe how proba-
bilities of events are related. For practical purposes we divide the clauses
in a theory into main clauses and background clauses. Main clauses
describe the core relations of a theory; e.g. how each emotion depends
on a set of antecedent conditions in a theory of emotion. Background
clauses describe things that are taken for granted in the theory, like for
what sets of objects the theory holds and any temporal constraints on the
relations referenced in the theory (e.g. that the emotion theory holds for
human beings, and that an emotion eliciting event precedes the expe-
rience of emotion).

The first principle is that the consequents that appear in the main
clauses of a psychological theory describe continuous probabilities of
events instead of a binary true/false outcomes (without committing to a
frequentist or Bayesian interpretation). The probability of a consequent
event, in turn, depends on one or more probabilistic conditions that are
specified in the antecedent of the respective clause. For example, that
the probability of using a drug in the future is a function of the proba-
bility of using the drug in the past and the probability that the drug
caused pleasure. The probability equations are the well-known Boolean
ones; i.e. X1*X2 for conjunction, X1 + X2 − X1*X2 for disjunction, and
1 − X for negation (see for example Jaynes, 2003). By having predicates
that have a probability value as one of the arguments it is possible to
represent degrees of truth, including falsity. Accordingly, we take 1 to

Fig. 1. Toy example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

5

mean true, i.e. that something is the case, and 0 to mean false, i.e. that
something is not the case. So, our previous example p(breathes
(rock), 0) means that it is not the case that a rock breathes. As stated
before, stating that a consequent is false in this sense, is distinct from the
situation in which the consequent is not provable.

The second principle is that we model causal relations as implica-
tions in which the effect is the consequent, and in which any number of
causal factors appear as atoms in the antecedent.11 As Mackie (1974),
we believe that events typically have a plurality of causes. Any given
event can occur because of several distinct clusters of factors, where
multiple factors within a single cluster are jointly necessary and suffi-
cient for the event to occur, while no individual cluster, in itself, is
necessary for the event to occur. That is, there might be other clusters of
factors that can make the same event happen (for an example see this
footnote12). So explaining something consists in providing one or more
many-to-one relations. In clausal form logic an explanatory cluster thus
becomes this relation between formulas: C⇐A1 ∧ A2 ∧ … ∧ An (where n
is an arbitrary integer); that is, the event C causally depends on the set of
necessary and sufficient factors A1,A2,…,An. And the same event C, might
occur because of distinct clusters of factors, e.g. C⇐A1 ∧ A2 ∧ A3, or C⇐
A4 ∧ A5 ∧ A6 ∧ A7 and so on. With that said, it is important to remember
that implication relations are distinct from causal relations. Causal re-
lations make much stronger ontological commitments, e.g. about the
temporal order between causes and effects, and about what happens
with an effect when one or more of its causes are manipulated (e.g.
Pearl, 2009; Shadish et al., 2002). The only meaning of an implication
relation is that the consequent follows deductively from the antecedent.
It is up to whoever designs a theory to specify what clauses state causal
relations and what clauses state other kinds of relations.

The third design principle is that we decompose construct names into
their semantic components (a construct is a concept that stands for a
psychologically relevant attribute or process, e.g. intelligence, exercise
behavior, or memory). Note that we used the word “event” instead of
“construct” or “variable” when describing relata in the clauses of a
theory. To this end we assume that construct names actually reference
more or less complex psychological events and that these events typi-
cally have 5 basic components, roughly following Pylyshyn (1973): A
subject, a verb, an object, a time and a value.

1. The subject is the thing that does something or is something.
2. The verb is what is being done.
3. The object is the thing that is acted upon by the subject.

4. Time is a more or less extended time frame.
5. Value is a number that indicates the probability of the event.

For example, to encode the meaning of the set of events that the
construct name “exercise behavior” references, our approach is to write
event(H, perform, exercise, T, X) ⇐ human(H) ∧ time(T),
which means that any human performs exercise with probability X at
any time. We also assume that the subject and object arguments in the
event predicate can be other events. Sometimes, for example, the object
of a person’s thoughts is another event. This statement says that the
probability that somebody thinks that it is unlikely that smoking causes
cancer in the future is 0.5: event(H, represent, event(smoking,
cause, cancer, T1, 0), T2, 0.5) ⇐ human(H) ∧ precedes(T2,

T1). Note that this sentence distinguishes between the semantic con-
tent and probability of the act of representing something (in the outer
event), and the semantic content and probability in the representation
(in the inner event, which describes the object of the act of
representing).

2.2. Theory examples

In this section we present 5 examples that illustrate how psycho-
logical theories can be represented in logic programs. By having a va-
riety of examples we intend to illustrate that LP can handle a number of
different scenarios. Note that all examples are desktop products which
haven’t been pitted against empirical observations. Our goal is to
illustrate how LP can be used for theory representation, not to
propose new theories per se (we tried to mirror the respective theory
as closely as possible though). Each theory program starts with the
directive:-include(’theoryToolbox.pl’). and a part called
“INPUT”. We will explain what these statements mean in more detail in
section 3. Inference; for now we just skip them (the % symbol denotes a
comment, i.e. text that isn’t code).

2.2.1. Phobia
Fig. 2 shows a basic theory program that represents the important

parts of definition of simple phobia from the Diagnostic and Statistical
Manual of Mental Disorders (DSM5; American Psychiatric Association,
2013). The background clauses of the theory define a set of objects of
phobia (derived from the examples section in the DSM5). Main clauses 1,
2, and 3 list different outcomes of the disorder; main clause 4 defines an
assumption that is external to the DSM5 definition. Consider, for
example, what main clause 1 means: The probability that H fears O is X1
if the following conditions hold: Source is the DSM5, H is a human, O is
an object, the probability that H has a phobia for O is X2, the probability
of X1 is equal to X2. The other clauses in the theory can be interpreted in
a similar way.

Because this is our first theory example, we take the opportunity to
point out some important features of the program (please look out for
these features in the other examples as well). First, the antecedents of
each main clause contain a set of domain definitions: The Hs stand for
humans and the Os stand for objects (the use of braces places the Xs in
the domain of real numbers, per the CLPR module). Describing the
domain of each variable in the clauses of a theory is good practice,
because this explicitly declares the sets of objects that are within the
scope of the theory (for example, given that the Hs are declared to be
humans, the theory explicitly says that it does not hold for other beings).
Secondly, there is an atom named source in the main clauses of the
theory. This is a way to keep track of the clauses that are involved in a
certain proof, and to study what happens when a certain clause is
assumed to hold, or assumed not to hold (we have more to say about this
in section 3. Inference). Third, note that from this theory it is possible to
deduce that some things are not the case, as opposed to being not
provable. For example, if the probability of phobia is zero, then the
probability of fear will be zero.

Even if the phobia example in Fig. 2 has advantages from a didactic

11 Readers who are familiar with logic programming might wonder why we do
not use a predicate to represent causal relations, schematically causes([P1, P2, ...,

Pn], E), where the Ps and E are atoms that represent the preconditions for an
effect and the effect, respectively (a list is necessary because the number of
preconditions for something usually varies). There are two reasons for why we
avoid this pattern. First, we think that it is harder to understand. Whenever any
of the Ps or the E contain variables, that represent probabilities or other do-
mains, these have to be bound in an antecedent. The resultant clauses have the
pattern causes([P1, P2, ..., Pn], E)⇐A1,A2,…,Am (where the As stand for atoms
or constraints in the antecedent). Assuming that people (informally) picture
both implication relations and causal relations as “if-then” relations, the mental
image ends up being “If A1,A2,…,Am, then (if P1, P2, ..., Pn, then E)”, which is
convoluted. Secondly, we have noted that there is a risk for ambiguity: Some-
thing needs to be placed in the antecedent to bind any variables in the conse-
quent, but what? Suppose for example that E stands for fire; should
flammability, presence of oxygen or presence of heat be moved to the ante-
cedent? There is no clear cut answer. All three conditions can’t be moved to the
antecedent because this eliminates the reason for having a binary causes
predicate in the first place.
12 Consider causal explanations of a behavior. One possible explanatory

cluster is that a person performed the behavior in the past and that it was
followed by a positive outcome. Another explanatory cluster is that the person
was influenced by peers which he or she admired, and that the environment
afforded the behavior. And so on.

J.-C. Rohner and H. Kjellerstrand

New
IdeasinPsychology61(2021)100838

6

Fig. 2. Phobia example.

J.-C. Rohner and H
. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

7

perspective, because it is simple, it does not represent a good theory.
Since it is supposed to mirror the DSM5 definition as closely as possible,
it ends up having two clauses with the same consequent: main clauses 1
and 2. In conjunction with what main clause 4 entails, this leads to a
problem in the theory. Can you spot it? If not, it will be revealed in
section 3. Inference.

2.2.2. Cognitive appraisal and emotion
Fig. 3 shows an appraisal theory of emotion, which is based on the

work of Lazarus (1991), Smith and Ellsworth (1985), and Smith and
Lazarus (1993). The background clauses of this theory define some time
frames, their relations, some goals, and how much people in general
value each goal. The main clauses of the theory state how the proba-
bilities of experiencing anger, fear, shame, sadness and happiness (X1s)
depend on the probabilities of distinct appraisal patterns (X2s through
X7s). Different appraisal patterns, in conjunction, trigger different
emotions (the products in the equations represent conjunctions). An
event can be appraised as congruent with a valued goal, in which case
happiness occurs, or appraised as not congruent with a valued goal, in
which case a negative emotion occurs (note that the probability of
experiencing negative emotions is negatively related to experiencing an
event as goal as congruent). Which negative emotion occurs is deter-
mined by how responsibility is attributed; i.e. blaming oneself in shame,
blaming others in anger, and blaming the world in sadness.

Note that appraisal and emotional experience have different time
frames than the events that trigger emotion (in the inner event). So for
example, the experience of sadness occurs in relation to something that
happened in a preceding time frame; the experience of fear occurs in
relation to something that might happen in a future time frame.

2.2.3. Substance misuse
Fig. 4A and Fig. 4B shows a theory about the relations between

substance misuse, physical harm, cognitive processes, operant learning,
and vicarious (observational) learning. It is a larger theory that in-
tegrates four research traditions: The Theory of Planned Behavior
(Ajzen, 1991), operant learning theory (Skinner, 1953), observational
learning theory (Bandura, 2004), and research about the addictiveness
and harmfulness of different drugs (Nutt et al., 2007). Given that
addiction seems to be a complex and multifaceted phenomenon we
found it interesting to show how a logic program can unify various ex-
planations in the same formal representation.

The background clauses of this theory (shown in Fig. 4A) define what
behaviors count as substance misuse, the potential outcomes of misuse,
the amount of physical harm and pleasure associated with using
different substances, and the time frames of the theory (1 to 6 is arbi-
trary; harm and pleasure values were obtained by dividing the expert
ratings in Nutt et al., 2007 by 3 to get a 0 to 1 range).

The main clauses of the theory (Fig. 4B) then state the following
relations: The influence of cognitive beliefs on attitudes, perceived
control and perceived norms (main clauses 1, 2, and 3); the influence of
attitudes, perceived control and perceived norms on behavioral in-
tentions (4); the influence of behavioral intentions on behavior (5); the
influence of operant learning on behavior (6); the influence of vicarious
learning on behavior (7); and the influence of substance misuse on
physical harm (8). To take an example, consider what main clause 1
means in simpler terms: Somebody represents that they like a misuse
behavior with probability X1, if they represent that the behavior causes
a positive outcome with probability X2, and if they represent that the

behavior causes a negative outcome with probability X3, and if X1 =

X2 * (1 – X3), where the product means conjunction and where 1 – X3
means negation of X3.

Note that main clauses 1, 2 and 3 contain atoms denoted
exogenousEvent in the antecedent. These atoms do not appear as
consequents in any clause of the theory, so they are not provable without
additional information. As will be shown in section 3. Inference,
exogenousEvent atoms have to be provided by the user instead.
Loosely speaking, these can be thought of as theory “parameters” that
can be varied by the user to explore different conclusions.

There are three characteristics of this theory which are worth dis-
cussing. First, it contains a longer chain of events than the phobia and
emotion theories we showed before. The effects of cognitive beliefs on
behavior, for example, are mediated by a number of events. Secondly,
this theory contains a recursive clause (main clause 6). A recursive
clause is a clause in which the consequent also appears as an atomic
formula in the antecedent. Main clause 6 means that misuse at time T1
depends on misuse at time T2 and on whether misuse causes a positive
outcome, provided that T2 precedes T1. Given the background as-
sumptions about time frames and their relations, the theory therefore
entails that misuse at time 6 is provable from misuse at time 1. Third,
note that there is a weakness in this theory. Consider the clause about
physical harm (8); it simply says that harm at time T1 depends on how
harmful misuse M is and on whether somebody has performed misuse M
at time T2. There is nothing in this clause that defines how physical
harm in one time frame also depends on harm in previous time frames,
but prolonged substance misuse should presumably have a cumulative
effect on harm. We have made this simplification for didactic reasons,
but it is possible to model a scenario in which harm is propagated across
time frames (see the file substanceMisuseExampleState.pl in the GitHub
repository).

2.2.4. Transitivity of distance relations
Fig. 5 shows a theory about how people deduce transitive distance

relations. Main clause 1 simply means that people can deduce that A is
beyond B if they represent that A is beyond B; and because this should be
easy, the two events are stipulated to have equal probabilities. Main
clause 2 is a recursive one; it means that people can deduce that A is
beyond C if they represent that A is beyond B and if they can deduce that
B is beyond C. Because this should be harder, the probability of the A is
beyond C deduction is weighted with 0.8 (which is just a simple
guesstimate).

A distinctive feature of this theory is that it can model inferences
about distance relations that involve an arbitrary number of steps by just
using the same two clauses (1 and 2). Suppose that this theory is handed
the information relation(jupiter, beyond, mars), relation(mars, beyond,
earth), and relation(earth, beyond, venus), where we have omitted the
prefix event(somebody, represent, ...) for the sake of clarity. According to
the theory, somebody should then be able to deduce relation(jupiter,
beyond, venus) with probability 0.64. And adding the information
relation(saturn, beyond, jupiter) would result in the conclusion that
somebody can deduce relation(saturn, beyond, venus) with probability
0.51.

2.2.5. Planning
Fig. 6 shows a theory about how people deduce plans from their

mental representations of the actions that bring about specific state
transitions (e.g. the actions needed to get from the state being at work, to

J.-C. Rohner and H. Kjellerstrand

New
IdeasinPsychology61(2021)100838

8

Fig. 3. Emotion example.

J.-C. Rohner and H
. Kjellerstrand

New
IdeasinPsychology61(2021)100838

9

Fig. 4A. Substance misuse example: Background clauses.

J.-C. Rohner and H
. Kjellerstrand

New
IdeasinPsychology61(2021)100838

10

Fig. 4B. Substance misuse example: Main clauses.

J.-C. Rohner and H
. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

11

the state being at home). A plan consists of a start state and a sequence of
actions that lead up to a goal state. There are two main clauses in the
theory. The first says that it is possible to deduce a plan from a repre-
sentation of a state transition. The second says that is possible to deduce
a plan by combining a representation of a state transition and a deduced
plan (which is harder, hence the 0.8 weight in the product of the last
clause).

A characteristic feature of this theory is that it can model events that
have a variable number of components. Cognitive representations of
plans usually have one start state and one goal state, but the number of
actions needed to get from start to goal varies a lot depending what kind
of plan one is considering. This is achieved by using recursion, where the
second clause calls itself and the first clause repeatedly, appending
DEDUCEDACTIONS to ACTION each time. Suppose that this theory is
handed information about the following state-action-state transitions,
excluding the prefix event(H, represent, ...) for the sake of simplicity:
transition(s1, a1, s2), transition(s2, a2, s3), and transition(s3, a3, s4). The
theory would then entail plan(s1, (a1, (a2, a3)), s4). And if the input
information is augmented with transition(s4, a4, s5) and transition(s5,

a5, s6), for example, it would also entail plan(s1, (a1, (a2, (a3, (a4, a5)
))), s6). The theory therefore represents events that have a variable
number of components.

2.3. Advantages with respect to representation

In this section we highlight the advantages of LP for representing
scientific theories in psychology. We discuss five positive features of LP
and refer back to the theory examples in the previous section.

2.3.1. Explicit background assumptions
All theories presuppose a more or less complex web of background

assumptions that determine what explanations and predictions they
entail (e.g. Stanford, 2017). Such assumptions might involve restrictions
on the kinds of behaviors, cognitions and populations that fall within the
scope of a theory, as well as auxiliary hypotheses about the workings of
relevant observational methods. Say that a hypothesis is that intentions
to perform a behavior cause the behavior. In an empirical test of this
hypothesis it is unavoidable to pick an instance of a behavior and a

Fig. 5. Distance example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

12

sample from a population, and doing so introduces two auxiliary hy-
potheses that will determine whether the theory succeeds of fails. This is
known as the Duhem-Quine thesis: Any singular hypothesis cannot be
refuted in light of contradicting observations, because predictions that
are derived from the hypothesis also depend on other auxiliary hy-
potheses (Bunnin & Yu, 2008). A major problem arises when such
background assumptions are not stated explicitly: It is difficult to say
whether a set of observations contradicts a theory or not, and pro-
ponents of the theory may opportunistically claim that the set of ob-
servations was, or was not, outside the scope of the theory. The problem
is well-known in philosophy of science (e.g. Popper, 1972).

In a logic program it is possible to build a formal description of
properties and relations involving any kinds of objects besides numbers.
So in addition to encoding the core relations of a theory it is also possible
to give a clear and detailed specification of its background assumptions.
Consider the emotion theory and the substance misuse theory (Figs. 3,
4A and 4B). These theories contain a rather detailed list of background
clauses, e.g. about how much people value certain goals and about what
behaviors count as misuse. If some or all of these clauses are removed,
important parts of the theories simply become unprovable, because all

background clauses appear in the antecedents of one or more main
clauses. The upshot is that architects of a theory are encouraged to be
specific about their presuppositions; and when they are, their theory will
generate unambiguous answers. Consider the following cases in relation
to the substance misuse theory. Does it predict that intentions
to use cannabis lead to cannabis use? Yes. Does it predict that
intentions to use methylphenidate lead to using methylphenidate?
No; methylphenidate does not appear in the background clauses.
Does it predict cannabis use in teenagers? Yes; the domain of H is all
human beings. And do events that are perceived to be incongruent with
survival goals cause negative emotions in the emotion theory? No, such
a goal doesn’t exist in the background clauses (although it probably
should). The point is that the use of LP involves a commitment to be
explicit and precise about all the parts of a theory, qualities that are
important in any scientific project.

2.3.2. Intra event semantics
Instead of construct names our design principles advise the use of

event predicates as the basic building blocks of the relations in a formal
theory; e.g. event(H, represent, event(M, cause, PO, T2, 1),

Fig. 6. Planning example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

13

T2, X2) instead of a symbol such as “behavioral beliefs” (here H, M, PO,
T2, and X2 refer to humans, misuse behaviors, positive outcomes, time
frames, and probabilities, respectively). The goal is to capture the
meaning of the events that construct names reference. As stated previ-
ously, the event predicate has five arguments: Subject, verb, object, time
and value. Subject, verb and object match the components that are
found in almost all natural language sentences. Time is a universal
property of events; something always happens in some time frame, even
things that at first may appear static, like properties of people. Time is an
integral part of memory theory, developmental theory, learning theory,
and so on, but it also plays a more general role, given that causal re-
lations and prediction relations are asynchronous.13

Being able to nest event predicates is important for expressing subtle
nuances in meaning. For example, it is possible to state that emotional
appraisal in a certain time frame is about an event that happened or
might happen in a different time frame (see sadness and anxiety in
Fig. 3), or that a person’s beliefs about his or her control over a behavior
are distinct from that person’s actual control over the behavior (see
main clause 2 in Fig. 4B). Logic programming does not impose an upper
limit on the number of functions that can be nested in an atomic for-
mula.14 So it is possible to make precise statements about complex
constructs like, say, higher order theory of mind (e.g. Baron-Cohen,
2000): That person 1 thinks about what person 2 thinks about what
person 3 thinks: event(H1, represent, event(H2, represent,
event(H3, represent, R, T, 1), T, 1), T, 1) where the Hs stand
for humans, R for a representation and T for a time frame.

By using variables it is possible to formalize some important intra
event relations. Consider the appraisal patterns for anger and shame in
the emotion theory (Fig. 3). By having different combinations of H1 and
H2 in the inner and outer event, it is possible to make detailed state-
ments about the attribution patterns that are involved in anger and
shame. And in the substance misuse theory in Fig. 4B (main clause 5),
it is possible to say that the person that has an intention
and the person in the contents of the intention are one and the
same (by having the same variable H in the outer and inner event).
This is not nitpicking: Sometimes a theory is supposed to
say something else, e.g. about our intentions towards the
behaviors of others. Consider another example which illustrates
the use of variables within an event predicate. Suppose that the goal is to
make formal statements about a construct such as memory for self-
performed actions; according to our design principles this would be
event(H, represent, event(H, perform, A, T1, X1), T2, X2),
with the antecedents human(H), action(A), time(T1), time(T2),
precedes(T1, T2), where X1 and X2 are numbers. By having H both
in the inner and outer event, T1 and T2 in the inner and outer event
(respectively), and the aforementioned constraints, it is possible to make
exact statements about the meaning of this construct.

Another advantage with having event predicates instead of construct
names as building blocks, is that a limited set of symbols can be used to
express several different concepts in a parsimonious way. This is because
logic is a compositional language. Consider the construct names in
Table 1, which all appear in the scientific literature. A closer look reveals
that all constructs involve the same objects (persons, groups and prob-
abilities) and the same relations (liking and belonging) in different
combinations. The corresponding LP statements are shown in the second
column of Table 1 (where the last argument in the event predicate is a

probability and where we have omitted the time argument for the sake
of simplicity).

Compare this to using construct names as the building blocks of
formal theories. If construct names reference relations, as in Table 1, and
if there are N objects that can take part in such relations, the number of
construct names becomes as large as all the ways in which these N ob-
jects can be (meaningfully) combined into relations. Short names for
important scientific concepts are practical for quick and easy commu-
nication. But a formal language in which the number of names might
increase exponentially as a function of the number of things one wants to
say is impractical.

The last advantage of LP with respect to describing the meaning of
events, is its capacity to represent events that have a variable number of
components. Consider the planning example in Fig. 6 again. In the
consequent event(H, deduce, plan(START, ACTIONS, GOAL),
time, X1), the variable ACTIONS can hold any number of actions,
because each recursion in the second clause appends one or more
deduced actions to an action. Planning is just one application of recur-
sion, but to us it seems that this property of LP could be important for
modeling several different kinds of cognitive processes. To name a few:
Reasoning about causal relations, spatial cognition, development of
vocabulary size, and so on. Essentially, LP should come in handy
whenever one wants to model mental representations that contain a
variable number of objects.

2.3.3. Inter event semantics
Besides being able to formalize construct meaning by using the event

predicate, our design principles also enable exact statements about the
intra-event components of different events in a clause. Schematically,
suppose that a clause contains an antecedent event(S1, V1, O1, T1, X1)
and a consequent event(S2, V2, O2, T2, X2), where the arguments refer
to subject, verb, object, time and value as usual. In this scheme, it is
possible to make statements about any relevant relations between S1
and S2, V1 and V2, O1 and O2, and T1 and T2, as well as any relations
that mix these arguments, such as S1 and V1, P1 and T2, and so on. This
feature plays an important role in many situations. Consider how the
emotions of shame and anger are described in Fig. 3 (main clauses 1 and
2), for example. By having H1 and H2 in different events across the
clause and the restriction ¬(H1 = H2) it is possible to state the following
exactly: A person experiences shame if that person thinks that he or she
caused an event that he or she perceives to be incongruent with a goal
that he or she values; a person experiences anger if that person experi-
ences an event that he or she appraises to be incongruent with a valued
goal, and if he or she thinks that another person caused the event. And in
the substance misuse example (Fig. 4A and Fig. 4B), the use of the
variable M across the events in main clause 4 explicitly conveys the
following information: The object of a person’s intention and the object
in that person’s attitudinal-, control- and normative beliefs, are exactly
one and the same. This is not a trivial statement: A well-known problem
in attitude research is that behaviors at different levels of abstraction
have been confounded, e.g. attitudes towards religion and actually going
to church (Fishbein & Ajzen, 1974). Finally, consider an example clause
that describes recognition memory and attention for any stimulus S:
event(H, represent, S, T1, X1) ⇐ event(world, expose, S,
T2, X2) ∧ event(H, attend, S, T2, X3). It goes without saying that
the relations between subjects, verbs, objects, time frames and proba-
bilities in these three formulas are essential in the hypothesis.

Another powerful feature of LP with regard to capturing the inter
event relations of a theory is recursion, as mentioned earlier. With
recursion it is possible to state general relations between events in a
compact form. Consider the substance misuse example in Fig. 4A and
Fig. 4B. Here, main clause 6 (which is recursive) models positive rein-
forcement across any time frames. And in the theory about the transi-
tivity of distance relations (in Fig. 5), recursion models inferences about
the spatial relations between any objects in a set, from representations
about which two objects are adjacent. Essentially, recursion is ideal for

13 Note that there is nothing in LP (or in Theory Toolbox) that says that events
have to have these 5 arguments; so for example it would have been entirely
possible to add a place argument to the event predicate if relevant.
14 Note though that nesting events does not make sense in all situations,

because the verb in the outer event imposes some restrictions on its object. The
object of verbs such as “represent”, “attend”, “perceive”, and “like” can be other
events. But the object of a verb such as “perform” is usually a single behavior
(and not another event).

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

14

describing how people think about any transitive relation, such as
location, causality, identity, parthood, logical implication, and so on.

2.3.4. Universal statements about well-defined domains
Theories consist of a set of universal statements about relations be-

tween events (e.g. Popper, 1972), i.e. they are nomothetic (law-like)
descriptions. A universal statement is a statement that is true for all
events of a certain kind. A singular statement, in contrast, is a statement
that is true for one specific event. Singular statements are not the things
that make up theories; instead, they are the things that are entailed by
theories. Consider this quote from Ajzen (1991), which illustrates the
distinction between universal and singular statements:

As in the original theory of reasoned action, a central factor in the
theory of planned behavior is the individual’s intention to perform a
given behavior. Intentions are assumed to capture the motivational
factors that influence a behavior; they are indications of how hard
people are willing to try, of how much of an effort they are planning
to exert, in order to perform the behavior. As a general rule, the
stronger the intention to engage in a behavior, the more likely should
be its performance. (p. 181)

Here the aim is to communicate a universal statement. Clearly, “the
individual” does not refer to John, Mary or any other specific person;
instead it refers to all past, present and future individuals of a certain
kind. Analogously, “the behavior” does not refer to somebody’s exercise
at the gym yesterday, somebody’s blood donation the 20th of June 2018,
or any other specific behavior; instead it refers to all past, present and
future behaviors of a certain kind.

A powerful feature of LP is that it is possible to describe properties
and relations that hold for all objects in one or more domains, while at
the same time constructing detailed definitions of these domains. In line
with our design principles this is realized by placing any number of
constraints in the antecedent of a clause and by using variables. As an
example, consider the clause on happiness in the emotion theory
(Fig. 3). Here it is possible to explicitly say that the effect of appraising a
goal congruent event on happiness holds for all events, all goals and all
humans; the implication succeeds whenever the conditions in the
antecedent hold. And in the theory about substance misuse (Fig. 4A and
Fig. 4B), for example, it is possible to say that observational learning
holds for any human, any misuse behavior, any referent, any
positive outcome and any time frames (main clause 7). Note that
both of these examples have rather liberal domain restrictions
(e.g. they hold for any human); but we could easily have added any
number of restrictions in the antecedent of each clause, such as
adult(H), belongs(H, somePopulation), voluntary(M),
and so on, even domain restrictions that are probabilistic, such as
belongs(H, somePopulation, X), where X is a probability.

The point is that LP provides a mechanism for doing two things in
conjunction: To say that a relation holds for all objects in one or more
domains and to build detailed definitions of these domains. Given that
psychological theories usually involve nomothetic statements, variables
and domain specifications play an important role in constructing such

representations.

2.3.5. Modularity
Logic programming also has important advantages in terms of

modularity: It is possible to add new components to a theory without
modifying the components that already exist in the theory,
and the amount of information that is gained by adding
new components goes beyond the amount of information just
contained in the added components. Consider a simple example
that illustrates the last property. Suppose that a program contains
mortal(X) ⇐ human(X) and human(socrates). Adding
human(plato). to this program does not just increment our knowl-
edge with the fact that Plato was a human being; we also come to know
that Plato was mortal.

In a logic program it is possible to add an arbitrary number of
background clauses and main clauses to the ones that already exist in a
theory. In the substance misuse theory (Fig. 4A and Fig. 4B), for
example, it would be easy to add the background assumption that eating
unhealthy is a misuse behavior and a clause about the effects of infor-
mation campaigns on peoples’ cognitions about the outcomes of sub-
stance misuse. Doing so simply involves adding two clauses to the
program and does not change the information that already exists in the
program. Also, the amount of information that is gained is higher than
the amount of information added. Suppose that we add the clause
misuse(eatUnhealthy). Beyond incrementing our knowledge with
just this information, we also come to know all distant and proximal
antecedents to eating unhealthy. All main clauses in the theory
have misuse(M) in their antecedent and this unifies with
misuse(eatUnhealthy). Among other things we would learn that an
explanation of eating unhealthy is that somebody expects that eating
unhealthy causes pleasure.

2.4. Summary

In this section we have discussed some positive features of LP with
regard to theory representation. We argued that logic programs can
encode relevant background assumptions, make exact statements about
the meaning of events (constructs), make exact statements about re-
lations between events, encode universal statements about well-defined
domains, and that they are modular representations. In the next section
we will present a set of tools for making scientific inferences from theory
programs.

3. Inference

Human scientific reasoning, like any other kind of human reasoning,
is imperfect in at least two ways. First, it heavily relies on working
memory, which has a limited amount of capacity (Baddeley, 2012). This
is problematic, because unlike everyday reasoning, which often suc-
ceeds using shortcuts, scientific reasoning should be an exhaustive
search for a valid conclusion that considers everything that is relevant to
a problem, no matter how complex it is. Consider the substance misuse
example. This theory is actually not that large and it says some relevant
things about drug abuse. Still, the number of components in the theory
and the number of relations that might or might not exist between these
components is much larger than what humans typically manage (in
general, the number of relations that can exist between any set of
components grows exponentially with the number of components).
Secondly, human scientific reasoning is sometimes distorted by different
biases, like belief biases and confirmation biases (e.g. Holyoak & Mor-
rison, 2005). These can lead up to conclusions that deviate from
normative models, such as logic or mathematics. And when a problem is
large, biases may cause people to selectively attend to some information
while ignoring other (potentially relevant) information (e.g. Koslowski,
2013).

When a theory is encoded in a logic program, it can be handed to an

Table 1
Construct names versus event predicates.

Construct name Event predicate

Self esteem event(H, like, H, 1)

In-group favoritism event(H, like, G, 1) ⇐ belong(H, G)
Outgroup derogation event(H, like, G, 0) ⇐ ¬belong(H, G)
Prejudice event(H1, like, H2, 0) ⇐ belong(H1, G1) ∧

belong(H2, G2) ∧ ¬(G1 = G2)

Group acceptance event(G, like, H, 1)

Self-derogation event(H, like, H, 0)

Interpersonal attraction event(H1, like, H2, 1) ⇐ ¬(H1 = H2)

Note. The time argument in event has been omitted for the sake of simplicity.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

15

algorithm that generates valid conclusions. In this section we describe
the software package Theory Toolbox (Rohner, 2020). Theory Toolbox
is a logic program that reasons about theory programs (as they were
described in section 2. Representation). It was inspired by, and extends,
some meta-interpreters for Prolog (e.g. Sterling & Shapiro, 1994; Triska,
2020). Theory Toolbox contains 6 predicates: Provable, Prove, Max
Value, Min Value, Incoherence and Falsifiability. Broadly speaking,
these can compute any predictions, explanations and numerical solu-
tions that are entailed by a theory, as well as information about the
quality of a theory in terms of its internal coherence and falsifiability.
Prediction, explanation and theory evaluation are fundamental com-
ponents of science. Theory Toolbox is made available in a theory pro-
gram by writing:-include(’theoryToolbox.pl’). in the
beginning of the file.

3.1. Provable

provable(GOAL, INPUT, RESULT) is used to determine if GOAL is
entailed by a theory and, in case GOAL contains any variables, to find the
variable instantiations that are entailed by the theory. Results are
printed with showProvable(RESULT). GOAL should be an atomic
formula in which any argument is a constant, a variable, a function or an
anonymous variable. An anonymous variable is written as a single un-
derscore (_) and it unifies with anything. Using an anonymous variable
for an argument in a GOAL formula is equivalent to the instruction
“Return anything that might unify with this formula and argument ac-
cording to the theory program.”. Suppose that Provable is used on the
toy example in Fig. 1. GOAL could contain any consequent that appears
in this theory, for example GOAL = event(h1, uses, _, _), which,

Fig. 7. Query with provable and output from substance misuse example.

Fig. 8. Query with provable and output from substance misuse example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

16

given how the theory was defined, means “What substance does h1 use
with what probability?” (substance was the third argument and proba-
bility was the fourth argument). One of the results would then be event
(h1, uses, heroin, 0.81). With GOAL = event(h1, uses,

heroin, 0.81), instead, the result would be the word true, meaning
that it is true that this goal is provable from the theory program (a goal
that is not provable generates false).

The second argument that should be defined is INPUT. INPUT is used
to inform Provable about anything that is considered to be provable, in
addition to the information in a theory program. In the section on proof
search we said that a goal is provable in each one of these cases: (1) the
goal is true; (2) the goal unifies with a consequent that has an empty
antecedent; and (3) the goal unifies with a consequent in which the
antecedent is provable. With provable(GOAL, INPUT, RESULT) a
goal is provable in an additional case: (4) The goal unifies with an atom
that appears in INPUT. The INPUT argument is a mechanism for
temporarily asserting information about any specific instance to which a
theory is applied. This information does not belong in the theory;
instead, it is handed to the theory in order to derive conclusions from it.
Theories, per se, should only make general statements, and should not be
filled with all the particular instances that are within their scope.
Consider the toy example in Fig. 1. As it stands, this is not a good theory
representation: The clauses on lines 3, 4, 11 and 12 should be removed,
because these just represent particular cases to which the theory can be
applied. Instead, this information belongs in INPUT. Syntactically,
INPUT is a Prolog list, which is a comma delimited enumeration of any
number of atoms in square braces. After amending the toy example,
Provable could thus be handed INPUT = [human(h1), event(h1,

used, heroin, 0.90)]. The statement means that human(h1) and
event(h1, used, heroin, 0.90) are provable (in addition to the
information in the theory program).

Note that the examples in Figs. 2, 3 and 4A, 4B, 5 and 6 contain a
commented section named “INPUT”. This section lists all the atoms that
are required in INPUT in order for all the consequents of the respective
theory to be provable. When designing a theory, it is good practice to
inform third parties about any assumptions in a separate section in the
beginning of the file. In this way it is possible to quickly get a picture of
what has to be defined in INPUT to get the intended output, without
having to look through all the clauses of the theory. More examples of
how INPUT is used are shown below.

Consider the query and output in Fig. 7 which is based on the sub-
stance misuse example (Fig. 4A and Fig. 4B). It represents a very broad
search for any conclusions that are entailed by the theory, a good
starting point (nothing that the theory entails is overlooked). The first
line in the query states that the goal is event(_, _, _, _, _). This is
the most general goal with respect to the main clauses in the theory,
because all of them have the five argument event predicate as a conse-
quent, and because all arguments in the goal are anonymous variables
(no argument in the goal will fail to unify with the corresponding
argument in the consequent of the theory). INPUT then defines the
atoms that are specified in the INPUT section of the theory. Note that
there is an atom denoted exogenousEvent in which all arguments are
anonymous variables. This renders all 6 exogenousEvent atoms in
main clauses 1, 2 and 3 provable, and, with the other information in
INPUT, the consequents of main clauses 1, 2, 3, 4, 5, 6, 7 and 8 (tech-
nically speaking, the meta interpreter in Provable has true as a base
case, so this is necessary). Using anonymous variables in this way yields
a result in which variables that are not bound to constants in the theory
will remain variables, and in which variables that are bound to constants
in the theory will be constants (see this footnote15 for a detailed
explanation and example). Finally, showProvable(RESULT) ∧ fail

is used to print to the console and to find all solutions to the goal,

Fig. 9. Query with provable and output from planning example.

15 By using anonymous variables in INPUT it is possible to obtain conclusions
that involve unbound variables, as well as conclusions that involve constants
that are entailed by a theory program, per se. Consider for example what
happens with the last (value) argument in exogenousEvent, which is an
anonymous variable in INPUT. Among others, it will unify with the X2 variable
in the first main clause of the theory in Fig. 4B. But because the values of X2 and
X3 are unknown, the value of X1 will be unknown as well (as will all other
values that depend on X1). So in this case, the output will just be a variable (i.e.
that the probability of an event is unknown). Compare this to what happens
when an anonymous variable is unified with, say, the T2 variable in the first
main clause. In this case, T2 has at least one grounding in the theory, because
precedes(T2, T1) is provable with T2 = 1 and so on. So this argument will
be a constant in any conclusions that are derived from this exogenousEvent.
The same goes for, say, the M variable in this clause, which will be bound to
useHeroin, and so on. By using anonymous variables in this way, it is possible
to find out if a theory entails a certain event, independently of whether some of
its arguments are unknown (i.e. variables), or known (i.e. constants).

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

17

respectively (fail is a built-in Prolog predicate).
The output from this query generates several results; only some of

these are shown in Fig. 7. The last result, for example, means that it is
provable that somebody experiences physical harm with probability A in
time frame 6. The value of A is unknown because no probability values
were handed to Provable, so a unique solution to the system of equations
in the theory does not exist. Note, though, that knowing that harm oc-
curs with an unknown probability is distinct from knowing nothing at all
about harm (in the first case, the theory contains an equation for esti-
mating the probability of harm, in the second case it doesn’t).

Fig. 8 shows a more specific query on the substance misuse example.
The goal event(somebody, experience, physicalHarm, 6, _)
means “What is the probability that somebody experiences physical
harm in time frame 6?”. The second line in this query unifies the variable
MISUSE with any misuse behavior (e.g. useHeroin); MISUSE is then
included in INPUT to assume that somebody performs this behavior in
time frame 1 with a probability of 1. Finally, write(MISUSE) and
showProvable(RESULT) are used to print to the console (write is a
built-in Prolog predicate). Note, for example, that the probability of
harm is higher for alcohol use than for benzodiazepine use even though
the background assumptions in the theory stated that alcohol is less
harmful (in Fig. 4A). This is because alcohol is rated to produce more
pleasure which, by the clause about positive reinforcement, increases
the probability of misuse across time frames, and because the proba-
bility of experiencing harm is weighted with the probability of misuse.

Fig. 9 illustrates how Provable and Show Provable can be applied to
the planning example (in Fig. 6). Note that plans vary in length and that
the probability of deducing a longer plan is lower than the probability of
deducing a shorter plan. This is because the probability of deducing a
plan is weighted by 0.8 in each recursion in the second clause of the
theory.

3.2. Prove

prove(GOAL, INPUT, PROOF) generates a PROOF for GOAL given
INPUT (or false if GOAL is not provable) .16 The predicate is used in
conjunction with showProof(PROOF) to display a proof in readable
form. Essentially, these predicates return explanations for why a certain
conclusion is entailed by a theory. Show Proof displays the sub-proof for
a goal below the goal, indented to the right, where sub-goals with the
same level of indentation come from the same clause. An important
property of Prove is that it can generate a numerical solution for a goal
that involves a mathematical expression, if a unique solution exists, but
also generate a symbolic solution, when a unique solution does not exist.
This is useful when the probabilities of one or more antecedent events
are unknown but a user still wants to get an explanation from a theory.

Fig. 10 contains an example of using Prove on the substance misuse
example (in Fig. 4A and Fig. 4B). The goal event(somebody,
perform, useTobacco, 6, _) means “The unknown probability of
using tobacco in time frame 6.”. Note that INPUT defines the atoms
listed in the input section, including an atom exogenousEvent with all
arguments set to anonymous variables. This is necessary for the conse-
quents of main clauses 1, 2 and 3 to be provable, and in turn the con-
sequents of main clauses 4, 5, 6, 7, and 8. Prove will only generate proofs
that involve provable antecedents, so to obtain a complete explanation
from a theory, all of its antecedents have to hold (the meta interpreter in
Prove has true as a base case, like Provable). Using an input with
anonymous variables will also generate proofs in which variables that
are not bound to constants in the theory will remain variables, and in
which variables that can be bound to constants in the theory will be
constants (again, see footnote 15 for an explanation and example).

The lower part of the figure shows one of the longer proofs for the

goal. Prove returns a symbolic solution because no numbers were
handed to it in INPUT; variables with unknown values are labelled
alphabetically, starting with A. Note that the antecedent true either
occurs when there is a clause with an empty antecedent in the theory
program or when an atom unifies with a term in INPUT (which is passed
to Prove). In Fig. 10 we have omitted the proofs for precedes for space
reasons.

Fig. 11 shows an example in which Prove and Show Proof
are applied to the emotion theory (in Fig. 3). The goal
event(h1, experience, _, present, _) means “What does h1
experience in the present with what probability?”. On the second line in
the query the variable T is unified with past or future to determine
the effects of having emotion eliciting events in the past or future (note
where T occurs in INPUT). Fig. 11 only shows two proofs for when
T = past because of space limitations. When T = future, the fear so-
lution is the only one that exists (other emotions were defined to occur in
response to events in the past in the theory).

3.3. Max Value

maxValue(X, GOAL, INPUT) and showMaxValue(GOAL,

INPUT) find and show a proof for GOAL given INPUT, such that the
numerical argument X in GOAL is as high as possible (internally Show
Max Value calls Prove, which was explained in the previous section). If
there is more than one proof for attaining the maximum value, all proofs
are returned. If GOAL is not provable the output is false. These pred-
icates thus play an important role for finding a solution to a system of
equations with several unknowns. INPUT should define a couple of
alternative values for numerical variables that are exogenous; i.e. vari-
ables that do not appear as dependents in any theory equation. In con-
crete terms, suppose that some parts of a theory are {X1 = X2 - 0.5 *
X3} and {X3 = X4 + X5}. Here, the values of X2, X4 and X5 should be
defined in INPUT, because they are exogenous. If the assumption is that
X2, X4 and X5 each can take on the values 0.1 or 0.9, the maximum of
X1 is 0.8 with X2 = 0.9, X4 = 0.1 and X5 = 0.1. How many values
and which values are chosen for exogenous variables is up to the user.
Choosing fewer values speeds up the search but increases the risk of
missing a global maximum; choosing more values slows the search but
reduces the risk of missing a global maximum. The algorithm in Max
Value simply iterates through all solutions and picks the one with the
highest value (in the future we will probably implement a better opti-
mization algorithm).

Broadly speaking, Max Value and Show Max Value can be
used to find the antecedent conditions of a problem, with a goal such as
event(somebody, perform, useHeroin, 6, X), or how
a positive outcome can be achieved, with a goal such as
event(somebody, perform, healthScreenings, 6, X).

Fig. 12 shows an example in which Max Value and
Show Max Value are applied to the substance misuse theory
(in Fig. 4A and Fig. 4B). The query finds a proof for
event(somebody, perform, eatUnhealthy, 6, X) such that the
value of X is as high as possible. In INPUT three alternative probabilities
are given to the exogenous events in the theory. The other arguments are
set to anonymous variables to ensure that all direct and indirect ante-
cedents of the goal are provable and therefore returned in the proof,
independently of whether they involve unbound variables or constants
entailed by the theory program (see footnote 15 for an explanation).
Note that an atom about eating unhealthy has been added in INPUT. By
doing so the theory generalizes to eating unhealthy even though infor-
mation about this behavior is missing from its background assumptions
(see Fig. 4A). This highlights how easy it is to extend a theory so that it
generalizes to additional instances. The lower part of Fig. 12 shows one
of the proofs. In the output, note how the probabilities of exogenous
events maximize the probability of the goal event (eating unhealthy),
and that the probabilities of exogenous events propagate in the system of
equations that lead up to the probability of the goal.

16 A special thanks goes to Daniel Lyons on Stack Overflow for pointing out the
right direction when approaching this problem.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

18

3.4. Min Value

minValue(X,GOAL,INPUT) and showMinValue(GOAL,INPUT)
work in the same way as the previous predicates, except that they find
and show a proof for GOAL given INPUT, such that the numerical
argument X in GOAL is as low as possible. This can come in handy when

answering questions such as how a problem can be minimized, with a
goal like event(somebody, perform, eatUnhealthy, 6, X), or
why the current state of affairs differs from a desired state, with a goal
like event(somebody, perform, eatHealthy, 6, X).

Fig. 10. Query with prove and output from substance misuse example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

19

3.5. Incoherence

incoherence(INPUT, GOAL1, GOAL2, THRESHOLD, X1, X2)

determines if a theory entails that GOAL1 and GOAL2 differ in their
numerical variables X1 and X2 (respectively) more than the number17 in
THRESHOLD; specifically if abs(X1 - X2) > THRESHOLD (absence of
incoherence results in the output false). Suppose that there
are two goals that have the same variables as arguments except for their
probabilities; e.g. GOAL1 = event(S, V, O, T, X1) and
GOAL2 = event(S, V, O, T, X2). When these goals appear in the
same clause, each variable S, V, O, T has to hold the same constant
because the scope of a variable is the clause. If a theory entails that X1
and X2 are different, it means that the theory makes incoherent pre-
dictions. That is, even when both events have the same semantic content
(the same variables in the subject, verb, object and time arguments) they

have different probabilities. This could mean that there is a problem in
the theory.

Consider Fig. 13 where Incoherence and the corresponding output
predicate Show Incoherence are applied to the theory of simple phobia
(in Fig. 2). Is this theory coherent? It seems not, because it predicts
different probabilities of experiencing fear even if the input is the same
(why the incoherence occurs is shown in the output). The theory should
be amended somehow, e.g. by making encounters of a phobic object
and avoidance of the object asynchronous, or by removing the first
main clause in Fig. 2). Note that incoherence only arises when
source(plausibleAssumption) is assumed to hold; removing it
from INPUT does not result in an incoherent theory.

3.6. Falsifiability

falsifiability(GOAL, INPUT, N) counts the number of
unique consequents N (i.e. predictions) with respect to GOAL

given INPUT. Results are printed to the console by using

Fig. 11. Query with prove and output from emotion example.

17 It is up to the user to choose an appropriate value for THRESHOLD.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

20

showFalsifiability(GOAL, INPUT, N). Consider the theory about
distance relations in Fig. 5. It contains two sub-theories. Main clause 2 is
recursive: It means that somebody can deduce that A is beyond C, if that
person represents that A is beyond B and can deduce that B is beyond C.
Main clause 3 is not recursive: It means that somebody can deduce that A
is beyond C, if that person represents that A is beyond B and represents
that B is beyond C. Fig. 14 shows a query with Falsifiability and the
associated output predicate. Note that INPUT states that the recursive
sub-theory holds. As shown in the figure, this theory generates 28 pre-
dictions. Replacing source(recursive) with source(non-

recursive) in INPUT only results in 13 predictions (not shown in the
figure). The recursive sub-theory is therefore a better theory because it is

more falsifiable (i.e. more general), even if it contains about the same
amount of code as the non-recursive one.

3.7. Summary

In this section we have shown how the predicates in Theory Toolbox
can be used to find the logical consequences of a theory (Provable),
explain these consequences in terms of their antecedents (Prove), find
the antecedents that maximize or minimize the probability of a conse-
quent (Max Value and Min Value) and to evaluate a theory in terms of its
internal coherence and falsifiability (Incoherence and Falsifiability).
The GitHub repository for Theory Toolbox contains additional examples

Fig. 12. Query with max value and output from substance misuse example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

21

that show how the predicates in the toolbox can be used, as well as in-
structions for installing and running it along with SWI Prolog.

4. Discussion

In this paper, we have described how theories can be represented as
logic programs and discussed the advantages in terms of accuracy and
expressiveness. We also introduced a software package, Theory Toolbox,
which can be used to derive predictions, derive explanations, and
evaluate theories with regard to their internal coherence and falsifi-
ability. We believe that first order logic is an important addition to the
theoretical and analytical tools that are currently available in psychol-
ogy, and hope that this paper will inspire researchers to construct and
use theories that have this form.

There are several formal approaches to theory construction besides
LP; we mentioned a few of them in the introduction. So what approach
should be chosen for representing a given theory? Even if this is a
complicated issue that we cannot fully resolve here, we will try to pro-
vide some tentative recommendations about when LP can be useful.
These are as follows: (1) A theory is explicit, in the sense that it can
easily be described in terms of words and equations; (2) A theory con-
tains large amounts of (verbal) semantic information; (3) A theory fea-
tures complex relations, that involve several parameters and perhaps
nested relations (like in higher order theory of mind); (4) It is important
that any conclusions that are derived from a theory can be explained to
and understood by the user.

4.1. Limitations

We have not gone into the details of how theory programs are con-
structed from empirical data. Generally speaking, there seem to be two
possible options for tackling this task. First, it is possible to work
inductively, starting with data and proceeding to theory building. In this
case, one or more meta-analyses seem to be the best starting point,
because meta-analyses typically describe concepts and relations be-
tween the objects they reference in more or less general (abstract) terms,
as first order logic does. Logic programming has a very natural way of
representing relations at different levels of abstraction: More abstract
relations have fewer domain restrictions in their antecedent, e.g. just
human(H); less abstract relations have more domain restrictions in their
antecedent; e.g. human(H) and adult(H), and so on. The second op-
tion for relating theories to data is to work deductively, by starting with
theory construction and moving on to prediction and experimentation.
Predicates like Provable and Prove in Theory Toolbox should play an
important role in this context. In practice, of course, relating theory and
data involves both induction and deduction in a continuous interplay.

We have discussed LP from a purely theoretical perspective, with
little attention to its practical applications (beyond the practice of
conducting science). One potential application consists of expert sys-
tems; i.e. computer programs that represent a domain of knowledge,
such as the DSM5, which a person, such as a psychologist, can query in
various ways. The use of Prolog for building expert systems is well
known (e.g. Merritt, 1989). Our view is that LP is well suited for rep-
resenting explicit and relatively narrow knowledge domains. So an

Fig. 13. Query with incoherence and output from phobia example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

22

expert system for the whole of psychology seems difficult to implement,
but LP ontologies for domains such as the DSM5, psychotherapy rec-
ommendations, modern personality theory, or memory theory, to name
a few, are completely within reach. Logic programs for such domains
could then be complemented with suitable user interfaces to enable
clinicians, students or the general public, to pose queries and get an-
swers. Interestingly, SWI Prolog plays extremely well with the web, so it
would not be too hard to implement both back-end and front-end for an
expert system completely in SWI Prolog.

In this context, a potential limitation of LP is that it may be difficult
to cover all the information in a knowledge domain in a theory program,
especially when the domain involves large amounts of tacit knowledge.
Consider a concrete example. Suppose than an emotion theory says that
negative emotions arise when a person experiences a goal incongruent
event. When reading this, most people can deduce that events that
threaten survival will cause negative emotions, because it is common
knowledge that survival is an important goal. But the emotion theory in
Fig. 3 does not contain this information so it just yields the blunt
conclusion “not provable”. Still, there are ways to reduce the problem.
One is to use different knowledge elicitation techniques such as expert

interviews and “think aloud” protocols (see for example Gavrilova &
Andreeva, 2012). Another is to base programs on systematic literature
reviews and meta-analyses, as mentioned earlier. Of course, such tech-
niques do not guarantee that a theory program will cover everything,
but they are at least practical steps in the right direction. We also want to
reiterate that the aim of this project is to devise a scheme for theory
representation and inference, not to build something that replaces
human experts. This means that the relevant comparisons for our LP
approach are other knowledge representation methods such as natural
language and mathematics (not humans). Accordingly, the problem
with missing tacit knowledge is not exclusive to LP. For example, there
are many texts about emotion, written in natural language, that do not
explicitly say that survival is an important goal.

From a more technical perspective, there is a limitation that merits
some attention. Our approach to representing and computing proba-
bility relies on CLPR constraints that are placed in the clauses of a the-
ory, and not on a specialized probabilistic logic programming system.
Using CLPR in this way is simple and straight forward, because all
equations are stated explicitly in the theory and therefore transparent to
(and in control of) the user: There are no assumptions and/or equations

Fig. 14. Query with falsifiability and output from distance example.

J.-C. Rohner and H. Kjellerstrand

New Ideas in Psychology 61 (2021) 100838

23

“behind the curtains” that affect the numerical output. Simplicity and
transparency where important priorities. In addition, we found that a
CLPR representation of probability (in the theory), was most practical to
work with while we experimented with the meta-interpreter in Prove.
The drawback of this approach is that it lacks certain advanced features
that are present in systems for probabilistic logic programming, out of
the box, such as CPLINT and PROBLOG (De Raedt et al., 2007; Riguzzi,
2018). CPLINT, for example, can be used to perform both exact inference
and approximate inference (with Monte Carlo sampling), and to learn
the parameters as well as the structure of probabilistic logic programs
(Riguzzi, 2018).

Finally, we should mention two pitfalls in Prolog (a detailed dis-
cussion, however, is beyond our scope; instead we refer the interested
reader to Nilsson & Maluszynski, 1995; Shapiro & Sterling, 1986). The
first pitfall is that some (logically correct) recursive programs do not
terminate (i.e. they “loop” forever) because of how atoms are ordered in
an antecedent. But this problem is easily overcome by rearranging the
order of atoms of one or more clauses (placing a call to the consequent of
a recursive clause last in the antecedent); adding tabling to a recursive
clause can also help.18 The second pitfall is that negation is unsound in
some cases: When a negated atom contains one or more unbound vari-
ables; the ensuing conclusions are not logically correct. Here as well,
there is a solution: To make sure that all variables in a negated atom are
bound to constants before the negation.

4.2. Future research

In future work, there seem to be at least three goals that are worth
pursuing. First, it would be interesting to explore how Theory Toolbox
can be used in academic disciplines besides psychology. Because first
order logic is such a general language, the material in this paper seems
applicable there as well. A second area of development is to complement
existing predicates in Theory Toolbox with additional ones. For
example, a predicate that checks whether a theory subsumes another
theory, a predicate that does better numerical optimization, and a
predicate that computes a better measure of falsifiability (such as some
measure of entropy), and so on. A third goal is to make Theory Toolbox
more accessible on the web.19 At present, it requires a download and a
SWI Prolog installation. Ideally, instead, users should be able to go to a
web page, upload a theory or provide a link to it, and run the predicates
in Theory Toolbox from this page.

The theory examples in the paper can also be found in the GitHub
repository for Theory Toolbox. GitHub is an online software hosting and
version control platform. Generally speaking, we think that GitHub, or
some other version control system, is an ideal place for storing theories
in psychology, for three reasons: (1) Different research teams can
collaborate online around a theory; (2) It is possible to trace the history
of a theory with a detailed view of changes; (3) The theory can be cloned
to a local computer in order to run queries on it (e.g. with Theory
Toolbox). In this way all involved researchers can instantly update and
instantly query the latest version of the theory on which they collabo-
rate. And if the repository is public, the latest version of the theory is
instantly available to the general public.

5. Conclusions

In summary, we hope that we have succeeded in attracting readers’
interest in LP even if this is a complex topic. We find it fascinating that
researchers in psychology have the opportunity to collaborate online to
build expressive and precise theories in first order logic, and that such
theories can be handed to algorithms that conduct scientific inference.
Accuracy is an important sub-goal in the route towards the more general
goal of using science to improve human life.

CRediT authorship contribution statement

Jean-Christophe Rohner: Conceptualization, Methodology, Soft-
ware, Validation, Writing - original draft, Writing - review & editing,
Visualization, Project administration. Håkan Kjellerstrand: Concep-
tualization, Methodology, Software, Validation, Writing - review &
editing.

References

Adam, C., Herzig, A., & Longin, D. (2009). A logical formalization of the OCC theory of
emotions. Synthese, 168(2), 201–248.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human
Decision Processes, 50(2), 179–211.

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental
disorders (DSM-5®). American Psychiatric Association Publishing.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An
integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual
Review of Psychology, 63, 1–29.

Bandura, A. (2004). Observational learning. In J. H. Byrne (Ed.), Learning and memory
(2nd ed. ed. (pp. 482–484). Macmillan Reference.

Baron-Cohen, S. J. (2000). Understanding other minds: Perspectives from developmental
cognitive neuroscience. Oxford University Press.

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of
multinomial process tree modeling. Psychonomic Bulletin & Review, 6(1), 57–86.

Bielza, C., & Larrañaga, P. J. (2014). Bayesian networks in neuroscience: A survey.
Frontiers in Computational Neuroscience, 8, 1–23, 131.

Bond, A. H. (1999). Describing behavioral states using a system model of the primate
brain. American Journal of Primatology, 49(4), 315–338.

Bratko, I. (2001). Prolog programming for artificial intelligence. Pearson education.
Bunnin, N., & Yu, J. (2008). The Blackwell dictionary of western philosophy. John Wiley &

Sons.
Clocksin, W. F., & Mellish, C. S. (2012). Programming in prolog: Using the ISO standard.

Springer Science & Business Media.
Cohen, P., West, S. G., & Aiken, L. S. (2014). Applied multiple regression/correlation

analysis for the behavioral sciences. Psychology Press.
Colmerauer, A., & Roussel, P. (1996). The birth of Prolog. In T. J. Bergin, & R. G. Gibson

(Eds.), History of programming languages (pp. 331–367). ACM Press and Addison
Wesley.

Crookes, D. (1988). Using Prolog to present abstract machines. ACM SIGCSE Bulletin, 20
(3), 8–12.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic prolog and its
application in link discovery. In International joint conferences on artificial intelligence
(pp. 2468–2473) (Hyderabad).

Fishbein, M., & Ajzen, I. (1974). Attitudes towards objects as predictors of single and
multiple behavioral criteria. Psychological Review, 81(1), 59.

Flax, L. (2007). Cognitive modelling applied to aspects of schizophrenia and autonomic
computing. International Journal of Cognitive Informatics and Natural Intelligence, 1(2),
58–72.

Fuchs, N. E., Kaljurand, K., & Kuhn, T. (2008). Attempto controlled English for
knowledge representation. In C. Baroglio, P. A. Bonatti, J. Małuszyński,
M. Marchiori, A. Polleres, & S. Schaffert (Eds.), Reasoning web: 4th international
summer school 2008, Venice, Italy, september 7-11, 2008, tutorial lectures (pp.
104–124). Springer Berlin Heidelberg.

Gavrilova, T., & Andreeva, T. (2012). Knowledge elicitation techniques in a knowledge
management context. Journal of Knowledge Management, 16(4), 523–537.

Gordon, A. S., & Hobbs, J. R. (2017). A formal theory of commonsense psychology: How
people think people think. Cambridge University Press.

Griffiths, T. L., & Tenenbaum, J. B. (2007). Two proposals for causal grammars. Causal
learning: Psychology, philosophy, and computation (pp. 323–345).

Holyoak, K. J., & Morrison, R. G. (2005). The Cambridge handbook of thinking and
reasoning (137). Cambridge University Press.

Holzbaur, C. (1995). OFAI clp (q,r) manual, edition 1.3.3. Austrian research Institute for
artificial intelligence.

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines.

Nature Machine Intelligence, 1(9), 389–399.
Koslowski, B. (2013). Scientific reasoning: Explanation, confirmation bias, and scientific

practice. Springer Publishing Company.

18 More information about tabling can be found in this link: https://www.sw
i-prolog.org/pldoc/man?section=tabling.
19 In fact, there is an online version of SWI Prolog, called Swish, which can run

Prolog code in a web browser. The problem, however, is that Theory Toolbox,
like any other meta-interpreter, needs to be able to call arbitrary goals, and
such calls are blocked by Swish for security reasons (which is understandable).
A possible solution might be to implement a custom web server written in SWI
Prolog that lifts these limitations.

J.-C. Rohner and H. Kjellerstrand

http://refhub.elsevier.com/S0732-118X(20)30213-0/sref1
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref1
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref2
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref2
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref3
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref3
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref4
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref4
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref5
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref5
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref6
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref6
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref7
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref7
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref8
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref8
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref9
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref9
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref10
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref10
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref11
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref12
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref12
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref13
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref13
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref14
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref14
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref15
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref15
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref15
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref16
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref16
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref17
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref17
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref17
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref18
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref18
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref19
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref19
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref19
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref20
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref20
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref20
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref20
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref20
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref21
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref21
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref22
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref22
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref23
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref23
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref24
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref24
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref25
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref25
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref26
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref27
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref27
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref28
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref28
https://www.swi-prolog.org/pldoc/man?section=tabling
https://www.swi-prolog.org/pldoc/man?section=tabling

New Ideas in Psychology 61 (2021) 100838

24

Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature
Neuroscience, 21(9), 1148–1160.

Lally, A., & Fodor, P. (2011). Natural language processing with Prolog in the IBM Watson
system. https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-wit
h-prolog-in-the-ibm-watson-system/.

Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion.
American Psychologist, 46(8), 819–834.

Mackie, J. L. (1974). The cement of the universe: A study of causation. Clarendon Press.
Marwala, T. (2019). Handbook of machine learning. World Scientific.
McArdle, J. J., & Kadlec, K. M. (2013). Structural equation models. In The Oxford

handbook of quantitative methods (Vol. 2, pp. 295–338). Oxford University Press.
Merritt, D. (1989). Building expert systems in Prolog. New York: Springer Verlag.
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions,

methods, and applications in interpretable machine learning. In Proceedings of the
National Academy of Sciences, 116 pp. 22,071–22080), 44.

Nilsson, U., & Maluszynski, J. (1995). Logic, programming and prolog (2ed). John Wiley &
Sons.

Nutt, D., King, L., Saulsbury, W., & Blakemore, C. (2007). Development of a rational scale
to assess the harm of drugs of potential misuse. Lancet, 369, 1047–1053.

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.
Popper, K. R. (1972). The logic of scientific discovery. Hutchinson.
Pylyshyn, Z. (1973). What the mind’s eye tells the mind’s brain: A critique of mental

imagery. Psychological Bulletin, 80(1), 1–24.
Rayner, M., Hockey, B. A., Renders, J.-M., Chatzichrisafis, N., & Farrell, K. (2005).

Spoken language processing in the Clarissa procedure browser. Natural Language
Engineering, 1(1), 1–28.

Riguzzi, F. (2018). Foundations of probabilistic logic programming. River Publishers.
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12(1), 23–41.
Rohner, J. C. (2020). Theory toolbox. Retrieved 15 sep 2020 from. https://github.co

m/JeanChristopheRohner/theory-toolbox.

Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence : A modern approach (3rd
ed.). Prentice Hall.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-
experimental designs for generalized causal inference. Houghton. Mifflin and Company.

Shapiro, S., & Kouri Kissel, T. (2018). Classical logic. In E. Zalta (Ed.), Stanford
encyclopedia of philosophy. Metaphysics research lab. Stanford University.

Shapiro, E., & Sterling, L. (1986). The art of Prolog. The Massachusetts Institute of
Technology.

Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2000). Research methods in
psychology. McGraw-Hill.

Skinner, B. F. (1953). Science and human behavior. Simon and Schuster.
Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion.

Journal of Personality and Social Psychology, 48(4), 813.
Smith, C. A., & Lazarus, R. S. (1993). Appraisal components, core relational themes, and

the emotions. Cognition & Emotion, 7(3–4), 233–269.
Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., & King, R. D. (1996). Theories for

mutagenicity: A study in first-order and feature-based induction. Artificial
Intelligence, 85(1), 277–299.

Stanford, K. (2017). Underdetermination of scientific theory. In E. N. Zalta (Ed.), The
stanford encyclopedia of philosophy. Metaphysics research lab. Stanford University.

Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., & Silver, B. (1989). Solving symbolic
equations with PRESS. Journal of Symbolic Computation, 7(1), 71–84.

Sterling, L., & Shapiro, E. Y. (1994). The art of Prolog: Advanced programming techniques.
Massachusetts Institute of Technology Press.

Triska, M. (2020). The power of prolog. Retrieved 9 May 2020 from https://www.met
alevel.at/prolog.

Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-prolog. Theory and
practice of logic programming (Vol. 12, pp. 67–96), 1-2.

Wilson, W. (2005). Use of logic programming for complex business rules. In International
conference on logic programming (pp. 14–20). Springer.

J.-C. Rohner and H. Kjellerstrand

http://refhub.elsevier.com/S0732-118X(20)30213-0/sref29
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref29
https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref31
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref31
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref32
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref33
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref34
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref34
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref35
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref36
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref36
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref36
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref37
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref37
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref38
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref38
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref39
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref40
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref41
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref41
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref42
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref42
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref42
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref43
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref44
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref44
https://github.com/JeanChristopheRohner/theory-toolbox
https://github.com/JeanChristopheRohner/theory-toolbox
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref45
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref45
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref46
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref46
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref47
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref47
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref48
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref48
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref49
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref49
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref50
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref51
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref51
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref52
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref52
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref53
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref53
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref53
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref54
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref54
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref55
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref55
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref56
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref56
https://www.metalevel.at/prolog
https://www.metalevel.at/prolog
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref58
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref58
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref59
http://refhub.elsevier.com/S0732-118X(20)30213-0/sref59

	Using logic programming for theory representation and scientific inference
	1 Logic programming
	1.1 Syntax and semantics
	1.2 Proof search

	2 Representation
	2.1 Design principles
	2.2 Theory examples
	2.2.1 Phobia
	2.2.2 Cognitive appraisal and emotion
	2.2.3 Substance misuse
	2.2.4 Transitivity of distance relations
	2.2.5 Planning

	2.3 Advantages with respect to representation
	2.3.1 Explicit background assumptions
	2.3.2 Intra event semantics
	2.3.3 Inter event semantics
	2.3.4 Universal statements about well-defined domains
	2.3.5 Modularity

	2.4 Summary

	3 Inference
	3.1 Provable
	3.2 Prove
	3.3 Max Value
	3.4 Min Value
	3.5 Incoherence
	3.6 Falsifiability
	3.7 Summary

	4 Discussion
	4.1 Limitations
	4.2 Future research

	5 Conclusions
	CRediT authorship contribution statement
	References

